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On the Heston Model with Stochastic Interest Rates∗
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Abstract. We discuss the Heston model [Rev. Financ. Stud., 6 (1993), pp. 327–343] with stochastic interest
rates driven by Hull–White (HW) [J. Derivatives, 4 (1996), pp. 26–36] or Cox–Ingersoll–Ross
(CIR) [Econometrica, 53 (1985), pp. 385–407] processes. Two projection techniques to derive
affine approximations of the original hybrid models are presented. In these approximations we can
prescribe a nonzero correlation structure between all underlying processes. The affine approximate
models admit pricing basic derivative products by Fourier techniques [P. P. Carr and D. B. Madan,
J. Comput. Finance, 2 (1999), pp. 61–73, F. Fang and C. W. Oosterlee, SIAM J. Sci. Comput., 31
(2008), pp. 826–848] and can therefore be used for fast calibration of the hybrid model.
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1. Introduction. Modelling derivative products in finance usually starts with the specifi-
cation of a system of stochastic differential equations (SDEs) that correspond to state variables
like stock, interest rate, and volatility. By correlating the SDEs from the different asset classes,
one can define so-called hybrid models and use them for pricing multiasset derivatives. Even
if each of these SDEs yields a closed-form solution, a nonzero correlation structure between
the processes may cause difficulties for modeling and product pricing. Typically, a closed-form
solution of the hybrid models is not known, and numerical approximation by means of Monte
Carlo (MC) simulation or discretization of the corresponding partial differential equations
(PDEs) has to be employed for model evaluation and derivative pricing. The speed of pricing
European products is, however, crucial, especially for the calibration. Several theoretically
attractive SDE models that cannot fulfill the speed requirements are not used in practice.

The aim of this paper is to define hybrid SDE models that fit in the class of affine diffusion
processes (AD), as in Duffie, Pan, and Singleton [13]. For processes within this class a closed-
form solution of the characteristic function (ChF) exists. Suppose we have given a system of
SDEs, i.e.,

(1.1) dX(t) = μ(X(t))dt+ σ(X(t))dW(t).
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256 LECH A. GRZELAK AND CORNELIS W. OOSTERLEE

This system (1.1) is said to be of affine form if

μ(X(t)) = a0 + a1X(t) for any (a0, a1) ∈ Rn × Rn×n,(1.2)

(σ(X(t))σ(X(t))T)i,j = (c0)ij + (c1)
T
ijX(t), with (c0, c1) ∈ Rn×n × Rn×n×n,(1.3)

r(X(t)) = r0 + rT1 X(t) for (r0, r1) ∈ R× Rn,(1.4)

for i, j = 1, . . . , n, with r(X(t)) being an interest rate component. Then, the discounted ChF
is of the following form [13]:

φ(u,X(t), t, T ) = EQ

(
exp

(
−
∫ T

t
r(s)ds+ iuTX(T )

) ∣∣∣F(t)

)
= eA(u,τ)+BT(u,τ)X(t),

where the expectation is taken under the risk-neutral measure, Q. For a time lag, τ := T − t,
the coefficients A(u, τ) and BT(u, τ) have to satisfy the following complex-valued ordinary
differential equations (ODEs):

(1.5)

⎧⎪⎨⎪⎩
d

dτ
B(u, τ) = −r1 + aT1 B(u, τ) +

1

2
BT(u, τ)c1B(u, τ),

d

dτ
A(u, τ) = −r0 +BT(u, τ)a0 +

1

2
BT(u, τ)c0B(u, τ),

with ai, ci, ri, i = 0, 1, as in (1.2), (1.3), and (1.4).
In this article we focus our attention specifically on a hybrid model which combines the

equity and interest rate asset classes. Brigo and Mercurio [8] have shown that the assumption
of constant interest rates in the classical Black–Scholes model [7] can be generalized, and
by including the stochastic interest rate process of Hull and White [23], one is still able to
obtain a closed-form solution for European-style option prices. Originally, the Black–Scholes–
Hull–White model in [8] was not dedicated to pricing hybrid products but to increasing the
accuracy for long-maturity options. The model is not, however, able to describe any smile
and skew shapes present in the equity markets.

In [37] a hybrid model was presented which could provide the skew pattern for the equity
and included a stochastic (but uncorrelated) interest rate process. Generalizations were
presented in [19, 3], where the Heston stochastic volatility model [22] was used. Some form of
correlation was indirectly modeled by including additional terms in the SDEs (this approach
is discussed in some detail in section 3.1.1).

In [20, 21] the Heston stochastic volatility model was replaced by the Schöbel–Zhu (SZ)
model [35], while the interest rate was still driven by a Hull–White (HW) process (SZHW
model). In this model a full matrix of correlations can be directly imposed on the driving
Brownian motions. The model is well defined under the class of AD processes, but since
the SZHW model is based on a Vašiček-type process [36] for the stochastic volatility, the
volatilities can become negative.

A different approach to modelling equity-interest rate hybrids was presented by Benhamou,
Rivoira, and Gruz [6], extending the local volatility framework of Dupire [15] and Derman
and Kani [12] and incorporating stochastic interest rates.

Here, we investigate the Heston–Hull–White (HHW) and the Heston–Cox–Ingersoll–Ross
(HCIR) hybrid models and propose approximations so that we can obtain their ChFs. The
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ON THE HESTON MODEL WITH STOCHASTIC INTEREST RATES 257

framework presented is relatively easy to understand and implement. It is inspired by the
techniques in [19, 2].

Our approximations do not require several preliminary calculations of expectations like in
the case of Markovian projection methods [4, 5]. The resulting option pricing method benefits
greatly from the speed of ChF evaluations.

The interest rate models studied here cannot generate interest rate implied volatility smiles
or skews. They can therefore mainly be used for long-term equity options and for “not too
complicated” equity-interest rate hybrid products. As described in [24], for accurate modeling
of hybrid derivatives, it is necessary to be able to describe a nonzero correlation between equity
and interest rate. This is possible in the approximations presented here.

This paper is organized as follows. In section 2 we discuss the full-scale Heston
hybrid models with stochastic interest rate processes. Section 3 presents a deterministic
approximation of the HHW hybrid model, together with the corresponding ChF, and section
4 gives the ChF based on another stochastic approximation of that hybrid model. In section 5
we deal with the HCIR model. In section 6 the calibration based on the approximations of the
full-scale hybrid models is applied. Section 7 offers concluding remarks. Details of proofs and
tests are in the appendices, where, in particular, in Appendix C we compare the performance
of the approximations developed with the Markovian projection method studied in [4, 5].

2. Heston hybrid models with stochastic interest rate. With state vector X(t) =
[S(t), v(t)]T, under the risk-neutral pricing measure, the Heston stochastic volatility
model [22], which is our point of departure, is specified by the following system of SDEs:

(2.1)

{
dS(t)/S(t) = rdt +

√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWv(t), v(0) > 0,

with r > 0 a constant interest rate, correlation dWx(t)dWv(t) = ρx,vdt, and |ρx,v| < 1. The
variance process, v(t), of the stock, S(t), is a mean reverting square-root process, in which
κ > 0 determines the speed of adjustment of the volatility towards its theoretical mean v̄ > 0,
and γ > 0 is the second-order volatility, i.e., the volatility of the volatility.

As already indicated in [22], the model given in (2.1) is not in the class of affine processes,
whereas under the log-transform for the stock, x(t) = log S(t), it is. Then, the discounted
ChF is given by

(2.2) φH(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)v(t)) ,

where the functions A(u, τ), B(u, τ), and C(u, τ) are known in closed form (see [22]).

The ChF is explicit, but its inverse also has to be found for pricing purposes. Because
of the form of the ChF, we cannot get its inverse analytically, and a numerical method for
integration has to be used; see, for example, [10, 16, 29, 30] for Fourier methods.

2.1. Full-scale hybrid models. A constant interest rate, r, may be insufficient for pricing
interest rate sensitive products. Therefore, we extend our state vector with an additional
stochastic quantity, i.e., X(t) = [S(t), v(t), r(t)]T. This model corresponds to a hybrid
stochastic volatility equity model with a stochastic interest rate process, r(t). In particular, we
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258 LECH A. GRZELAK AND CORNELIS W. OOSTERLEE

add to the Heston model the HW interest rate [23] or the square-root CIR process [11]. The
extended model can be presented in the following way:

(2.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dS(t)/S(t) = r(t)dt +

√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t)− r(t))dt + ηrp(t)dWr(t), r(0) > 0,

where exponent p = 0 in (2.3) represents the HHW model and for p = 1
2 it becomes the HCIR

model. For both models the correlations are given by dWx(t)dWv(t) = ρx,vdt, dWx(t)dWr(t) =
ρx,rdt, and dWv(t)dWr(t) = ρv,rdt, and κ, γ, and v̄ are as in (2.1); λ > 0 determines the speed
of mean reversion for the interest rate process; θ(t) is the interest rate term structure; and η
controls the volatility of the interest rate. We note that the interest rate process in (2.3) for
p = 1

2 is of the same form as the variance process v(t).
System (2.3) is not in the affine form, not even with x(t) = logS(t). In particular, the

symmetric instantaneous covariance matrix is given by

(2.4) σ(X(t))σ(X(t))T =

⎡⎣ v(t) ρx,vγv(t) ρx,rηr
p(t)
√
v(t)

∗ γ2v(t) ρr,vγηr
p(t)
√
v(t)

∗ ∗ η2r2p(t)

⎤⎦
(3×3)

.

Setting the correlation ρr,v to zero would still not make the system affine. Matrix (2.4) is of
the linear form with respect to state vector [x(t) = log S(t), v(t), r(t)]T if two correlations, ρr,v
and ρx,r, are set to zero.1 Models with two correlations equal to zero are covered in [31].

Since for pricing equity-interest rate products a nonzero correlation between stock and
interest rate is crucial (see, for example, [24]), approximations to the Heston hybrid models
need to be formulated, so that correlations can be imposed. Variants are discussed in the
sections to follow. These approximate models are evaluated with the help of the Cholesky
decomposition of a correlation matrix.

We can decompose a given general symmetric correlation matrix, C, denoted by

(2.5) C =

⎡⎣ 1 ρ1 ρ2
∗ 1 ρ3
∗ ∗ 1

⎤⎦ ,
as C = LLT, where L is a lower triangular matrix, with

(2.6) L =

⎡⎢⎢⎢⎣
1 0 0

ρ1
√

1− ρ21 0

ρ2
ρ3−ρ2ρ1√

1−ρ21

√
1− ρ22 −

(
ρ3−ρ2ρ1√

1−ρ21

)2

⎤⎥⎥⎥⎦ .
We then rewrite the system of SDEs in terms of the independent Brownian motions,

dW̃(t), with the help of the lower triangular matrix L.

1Here we assume positive parameters.
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Since our main objective is to derive a closed-form ChF while assuming a nonzero
correlation between the equity process, S(t), and the interest rate, r(t), we first assume that
the Brownian motions for the interest rate r(t) and the variance v(t) are not correlated (the
case of a full correlation structure is discussed in detail in Appendix B).

By exchanging the order of the state variables X(t) = [S(t), v(t), r(t)]T to X∗(t) =
[r(t), v(t), S(t)]T, the HHW and HCIR models in (2.3) then have ρ1 ≡ ρr,v = 0, ρ2 ≡ ρx,r �= 0,
and ρ3 ≡ ρx,v �= 0 in (2.5) and read as

(2.7)

⎡⎢⎢⎢⎣
dr(t)

dv(t)

dS(t)

S(t)

⎤⎥⎥⎥⎦ =

⎡⎣ λ(θ(t)− r(t))
κ(v̄ − v(t))

r(t)

⎤⎦ dt+ σ(X∗(t))

⎡⎢⎣ dW̃r(t)

dW̃v(t)

dW̃x(t)

⎤⎥⎦ ,
with

(2.8) σ(X∗(t)) =

⎡⎢⎣ ηrp(t) 0 0

0 γ
√
v(t) 0

ρx,r
√
v(t) ρx,v

√
v(t)

√
1− ρ2x,v − ρ2x,r

√
v(t)

⎤⎥⎦ .
2.2. Reformulated Heston hybrid models. In the previous section we have seen that

for the HHW and HCIR models with a full matrix of correlations given in (2.3), the affinity
relations [13] are not satisfied, so that the ChF cannot be obtained by standard techniques.

In order to obtain a well-defined Heston hybrid model with an indirectly imposed
correlation, ρx,r, we propose the following system of SDEs:

(2.9) dS(t)/S(t) = r(t)dt+
√
v(t)dWx(t) + Ω(t)rp(t)dWr(t) + Δ

√
v(t)dWv(t), S(0) > 0,

with

(2.10)
dv(t) = κ(v̄ − v(t))dt + γ

√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t)− r(t))dt + ηrp(t)dWr(t), r(0) > 0,

where

(2.11) dWx(t)dWv(t) = ρ̂x,vdt, dWx(t)dWr(t) = 0, dWv(t)dWr(t) = 0,

where p = 0 for HHW and p = 1
2 for HCIR. We have included a function,2 Ω(t), and a constant

parameter, Δ. Note that we still assume independence between the instantaneous short rate,
r(t), and the variance process, v(t), i.e., ρ̂r,v = 0.

By exchanging the order of the state variables to X∗(t) = [r(t), v(t), S(t)]T, system (2.9)
is given, in terms of the independent Brownian motions, by

(2.12)

⎡⎢⎢⎢⎣
dr(t)

dv(t)

dS(t)

S(t)

⎤⎥⎥⎥⎦ =

⎡⎣ λ(θ(t)− r(t))
κ(v̄ − v(t))

r(t)

⎤⎦ dt+ σ̂(X∗(t))

⎡⎢⎣ dW̃r(t)

dW̃v(t)

dW̃x(t)

⎤⎥⎦ ,
2This under certain conditions can also be stochastic.

D
ow

nl
oa

de
d 

09
/1

7/
12

 to
 1

92
.1

6.
18

4.
13

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

260 LECH A. GRZELAK AND CORNELIS W. OOSTERLEE

where

(2.13) σ̂(X∗(t)) =

⎡⎢⎣ ηrp(t) 0 0

0 γ
√
v(t) 0

Ω(t)rp(t)
√
v(t) (ρ̂x,v +Δ)

√
v(t)
√

1− ρ̂2x,v

⎤⎥⎦ .
In the following lemma we show that the model (2.9) is equivalent to the full-scale HHW

model in (2.3), with nonzero correlation ρx,r.
Lemma 2.1. Model (2.9) satisfies the system in (2.3) with nonzero correlation ρx,r for

(2.14) Ω(t) = ρx,r

√
v(t)

rp(t)
, ρ̂2x,v = ρ2x,v + ρ2x,r, Δ = ρx,v − ρ̂x,v,

where correlation ρ̂x,v is as in model (2.9) and ρx,v as in model (2.3).
Proof. We presented the two models (2.3) and (2.9) in terms of the independent Brownian

motions, (2.7) and (2.12), respectively. By matching the appropriate coefficients in (2.7)
and (2.12), we find that the following relations should hold:

(2.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ω(t)rp(t)S(t) = ρx,r

√
v(t)S(t),√

1− ρ̂2x,v
√
v(t)S(t) =

√
1− ρ2x,v − ρ2x,r

√
v(t)S(t),

(ρ̂x,v +Δ)
√
v(t)S(t) = ρx,v

√
v(t)S(t).

By simplifying (2.15) the proof is finished.
If results (2.14) were directly included in the main system (2.9), the affinity property

of the system would be lost. So, in order to satisfy the affinity constraints, appropriate
approximations need to be introduced.

2.3. Log-transform. Before going into the details of the approximations of the HHW and
HCIR models, let us first find the dynamics for the log-transform of the reformulated Heston
hybrid models. By applying Itô’s lemma, model (2.9) in log-equity space, x(t) = logS(t),
with a constant parameter, Δ, and a function, Ω(t), is given by

dx(t) =

[
r(t)− 1

2

(
Ω2(t)r2p(t) + v(t)

(
1 + Δ2 + 2ρ̂x,vΔ

))]
dt+

√
v(t)dWx(t)

+Ω(t)rp(t)dWr(t) + Δ
√
v(t)dWv(t)

=

(
r(t)− 1

2
v(t)

)
dt+

√
v(t)dWx(t) + Ω(t)rp(t)dWr(t) + Δ

√
v(t)dWv(t),

because of (2.14).
For a given state vector X∗(t) = [r(t), v(t), x(t)]T, the symmetric instantaneous covariance

matrix (1.3) is given by

(2.16) Σ :=

⎡⎣ η2r2p(t) 0 ηΩ(t)r2p(t)
∗ γ2v(t) γv(t) (ρ̂x,v +Δ)
∗ ∗ Ω2(t)r2p(t) + v(t)

(
1 + Δ2 + 2ρ̂x,vΔ

)
⎤⎦ .

D
ow

nl
oa

de
d 

09
/1

7/
12

 to
 1

92
.1

6.
18

4.
13

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE HESTON MODEL WITH STOCHASTIC INTEREST RATES 261

As we consider two cases for parameter p = {0, 1/2}, the affinity issue appears in only one
term of matrix (2.16), namely, in element (1, 3):

(2.17) Σ(1,3) = ηΩ(t)r2p(t) = ηρx,r
√
v(t)rp(t) =

{
ηρx,r

√
v(t) for HHW,

ηρx,r
√
v(t)
√
r(t) for HCIR.

Although term Σ(3,3) does not seems to be of the affine form, by (2.14), it equals Σ(3,3) = v(t),
and therefore it is linear in the state variables.

Remark 1. We see that, in order to make either the HHW or the HCIR model affine,
one does not necessarily need to approximate function Ω(t); only the nonaffine terms in the
corresponding instantaneous covariance matrix3 need be approximated. By approximation
of the nonaffine covariance term, Σ(1,3), the corresponding pricing PDE also changes. The
Kolmogorov backward equation for the log-stock price (see, for example, [33]) is now given by

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t)− r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2

+
1

2
γ2v

∂2φ

∂v2
+

1

2
η2r2p

∂2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+Σ(1,3)

∂2φ

∂x∂r
− rφ,(2.18)

subject to terminal condition φ(u,X(T ), T, T ) = exp (iux(T )).

The derivations in section 2.3 show that system (2.9) is nothing but a reformulation of the
original HHW system under the conditions in (2.14). It is therefore sufficient to linearize the
nonaffine terms in the covariance matrix to determine an affine approximation of the full-scale
model. In the sections to follow we discuss two possible approximations for Σ(1,3).

3. Deterministic approximation for hybrid models. In order to make the Heston hybrid
model affine, we provide a first approximation for the expressions in (2.17) in section 3.1. The
corresponding ChF is derived in section 3.2.

3.1. Deterministic approach: The H1-HW model. The first approach to finding an
approximation for the term Σ(1,3) = ηρx,r

√
v(t)rp(t) in matrix (2.16) is to replace it by its

expectation; i.e.,

(3.1) Σ(1,3) ≈ ηρx,rE
(
rp(t)
√
v(t)
) ⊥⊥
= ηρx,rE(r

p(t))E(
√
v(t)),

assuming independence between r(t) and v(t).

The approximation for Σ(1,3) in (3.1) consists of two expectations: one with respect to√
v(t) and another with respect to rp(t). E(rp(t)) = 1 for p = 0, and it is E(

√
r(t)) for

p = 1/2. Since the processes for v(t) and r(t) are then of the same type, the approximations
are analogous. By taking the expectations of the stochastic variables, the model becomes of
affine form, so that we can obtain the corresponding ChF.

In Lemma 3.1 the closed-form expressions for the expectation and variance of
√
v(t) (a

CIR-type process) are presented.

3The drifts and the interest rate are already in the affine form, presented in (1.2) and (1.4).
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Lemma 3.1 (expectation and variance for CIR-type process). For a given time t > 0 the
expectation and variance of

√
v(t), where v(t) is a CIR-type process (2.1), are given by

(3.2) E(
√
v(t)) =

√
2c(t)e−λ(t)/2

∞∑
k=0

1

k!

(
λ(t)

2

)k Γ
(
1+d
2 + k

)
Γ(d2 + k)

and

(3.3) Var
(√

v(t)
)
= c(t)(d + λ(t))− 2c(t)e−λ(t)

( ∞∑
k=0

1

k!

(
λ(t)

2

)k Γ
(
1+d
2 + k

)
Γ
(
d
2 + k

) )2

,

where

(3.4) c(t) =
1

4κ
γ2(1− e−κt), d =

4κv̄

γ2
, λ(t) =

4κv(0)e−κt

γ2(1− e−κt)
,

with Γ(k) being the gamma function defined by

Γ(k) =

∫ ∞

0
tk−1e−tdt.

Proof. By [14] one can find the closed-form expression for the expectation E(
√
v(t)), which

by the principle of Kummer [28] can be simplified.

The analytic expression for the expectation, either of
√
v(t) or

√
r(t) in (3.1), is involved

and requires rather expensive numerical operations.

In order to find a first-order approximation, we can apply the so-called delta method (see,
for example, [1, 32]), which states that a function ϕ(X) can be approximated by a first-order
Taylor expansion at E(X), for a given random variable, X, with expectation, E(X), and
variance, Var(X), assuming that for ϕ(X) its first derivative with respect to X exists and is
sufficiently smooth.

The result below provides details of the approximation.

Result 3.2. The expectation, E(
√
v(t)), with stochastic process v(t) given by (2.3), can be

approximated by

E(
√
v(t)) ≈

√
c(t)(λ(t) − 1) + c(t)d+

c(t)d

2(d + λ(t))
=: Λ(t),(3.5)

with c(t), d, and λ(t) given in Lemma 3.1, and where κ, v̄, γ, and v(0) are the parameters
given in (2.3).

In order to find the approximation in Result 3.2, we can use the delta method as follows.
Assuming the function ϕ to be sufficiently smooth and the first two moments of X to exist,
we obtain by first-order Taylor expansion

(3.6) ϕ(X) ≈ ϕ(EX) + (X − EX)
∂ϕ

∂X
(EX).
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Since the variance of ϕ(X) can be approximated by the variance of the right-hand side of (3.6),
we have

Var(ϕ(X)) ≈ Var

(
ϕ(EX) + (X − EX)

∂ϕ

∂X
(EX)

)
=

(
∂ϕ

∂X
(EX)

)2

VarX.(3.7)

Now, by using this result for function ϕ(v(t)) =
√
v(t), we find

(3.8) Var(
√
v(t)) ≈

(
1

2

1√
E(v(t))

)2

Var(v(t)) =
1

4

Var(v(t))

E(v(t))
.

However, from the definition of the variance, we also have

(3.9) Var(
√
v(t)) = E(v(t))−

(
E(
√
v(t))
)2
,

and by combining (3.8) and (3.9) we obtain the following approximation:

(3.10) E(
√
v(t)) ≈

√
E(v(t)) − 1

4

Var(v(t))

E(v(t))
.

Since v(t) is a square-root process, as in (2.9), we have

(3.11) v(t) = v(0)e−κt + v̄(1− e−κt) + γ

∫ t

0
eκ(s−t)

√
v(s)dWv(s).

The expectation reads E(v(t)) = c(t)(d + λ(t)), and for the variance we get Var(v(t)) =
c2(t)(2d + 4λ(t)), with c(t), d, and λ(t) as given in (3.4).

Now, by substituting these expressions in (3.10), the result is proved. Since Result 3.2
provides an explicit approximation for Σ(1,3) in (3.1) in terms of a deterministic function for

E(
√
v(t)), we are, in principle, able to derive the corresponding ChF.
We show here for which parameters the expression under the square root in approxima-

tion (3.5) is nonnegative.
Consider the following inequality:

c(t)(λ(t) − 1) + c(t)d+
c(t)d

2(d+ λ(t))
≥ 0.(3.12)

Division by c(t) > 0 gives

2 (λ(t) + d) (d+ λ(t)) + d

2(d + λ(t))
≥ 1.(3.13)

So,

2 (λ(t) + d)2 − 2(λ(t) + d) + d ≥ 0.(3.14)
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By setting y = λ(t) + d we find 2y2 − 2y + d ≥ 0. The parabola is nonnegative for the
discriminant 4 − 4 · 2 · d ≤ 0, so that the expression in (3.5) is nonnegative for d ≥ 1

2 (i.e.,
2d ≥ 1). With d = 4κv̄/γ2 we can compare the inequality obtained to the Feller condition. If
the Feller condition is satisfied, the expression under the square root is certainly well defined.
If 8κv̄/γ2 ≥ 1 but the Feller condition is not satisfied, the approximation is also valid. If the
expression under the square root in (3.5) becomes negative, we suggest using the expressions
in Lemma 3.1 instead.

Remark 2. We assume that the first-order linear terms around the parameter values in the
Taylor expansion give an accurate representation. However, this may not work satisfactorily
for “flat” density functions, like those from a uniform distribution. In order to increase the
accuracy, higher-order terms can be included in the expansion [1]. More discussion on the
conditions for the delta method to perform well can be found in [32].

The approximation for E(
√
v(t)) in (3.5) is still nontrivial and may cause difficulties when

deriving the corresponding ChFs. In order to find the coefficients of the ChF, a routine for
numerically solving the corresponding ODEs has to be incorporated. Numerical integration,
however, slows down the option pricing engine and would make the SDE model less attractive.
As we aim to find a closed-form expression for the ChF, we further simplify Λ(t) in (3.5).
Expectation E(

√
v(t)) can be further approximated by a function of the following form:

(3.15) E(
√
v(t)) ≈ a+ be−ct =: Λ̃(t),

with a, b, and c constant. Appropriate values for a, b, and c in (3.15) can be obtained via an
optimization problem of the form mina,b,c ||Λ(t)− Λ̃(t)||n, where || · ||n is any nth norm.

We propose here, instead of a numerical approximation for these coefficients, a simple
analytic expression in Result 3.3.

Result 3.3. By matching functions Λ(t) and Λ̃(t) for t→ +∞, t→ 0, and t = 1, we find

(3.16)

lim
t→+∞Λ(t) =

√
v̄ − γ2

8κ
= a = lim

t→+∞ Λ̃(t),

lim
t→0

Λ(t) =
√
v(0) = a+ b = lim

t→0
Λ̃(t),

lim
t→1

Λ(t) = Λ(1) = a+ be−c = lim
t→1

Λ̃(t).

The values a, b, and c can now be estimated by

(3.17) a =

√
v̄ − γ2

8κ
, b =

√
v(0)− a, c = − log

(
b−1(Λ(1)− a)

)
,

where Λ(t) is given by (3.5).
The approximation given in Result 3.3 may give difficulties for v̄ < γ2/8κ in (3.17) (the

expression under the square root then becomes negative). We recognize that this expression
is well defined, as the expression under the square root in the function Λ(t) in Result 3.2 is
positive.

In order to measure the quality of approximation (3.17) to E(
√
v(t)) in (3.2), we perform

a numerical experiment (see the results in Figure 1). For randomly chosen sets of parameters
the approximation (3.17) resembles E(

√
v(t)) in (3.2) very closely.

We call the resulting model the H1-HW model (HHW model-1).

D
ow

nl
oa

de
d 

09
/1

7/
12

 to
 1

92
.1

6.
18

4.
13

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE HESTON MODEL WITH STOCHASTIC INTEREST RATES 265
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0.1

0.12

0.14

0.16

0.18

0.2

0.22

time (t)

E
(√

 v
(t

))

 

 proxy: κ =1.2,γ =0.1,v̄ =0.03,v(0) =0.04
exact

proxy: κ =1.2,γ =0.1,v̄ =0.02,v(0) =0.035
exact

proxy: κ =1.2,γ =0.1,v̄ =0.04,v(0) =0.01
exact

proxy: κ =0.8,γ =0.1,v̄ =0.04,v(0) =0.015
exact

proxy: κ =1,γ =0.2,v̄ =0.04,v(0) =0.02
exact

Figure 1. The quality of the approximation E(
√

v(t)) ≈ a+be−ct (continuous line) versus the exact solution
given in (3.2) (squares) for 5 random κ, γ, v̄, and v(0).

3.1.1. The case Δ = 0 and Ω(t) ≡ const. With Δ = 0 in systems (2.9) and (2.12),
the model resembles the one in [19, 3]. There, a constant parameter Ω̄ = Ω(t) was prescribed,
and an instantaneous correlation was imposed indirectly.

The following lemma, however, shows that this model with Δ = 0 resembles the full-scale
HHW and HCIR models only for correlation ρx,r = 0.

Lemma 3.4. The hybrid models (2.9) with Δ = 0 are full-scale HHW and HCIR models,
in the sense of system (2.3), only if the instantaneous correlation between the stock and the
interest rate processes in system (2.3) equals zero, i.e., ρx,r = 0.

Proof. The proof is analogous to the proof of Lemma 2.1. We see from the equalities
in (2.14) that system (2.7) resembles system (2.12) with Δ = 0 only if

(3.18) Ω̄ = ρx,r

√
v(t)

rp(t)
, ρ̂x,v = ρx,v, ρ̂2x,v = ρ2x,v + ρ2x,r.

The equations (3.18) hold only for ρx,r = 0. So, the models with Δ = 0 are not full-scale
HHW and HCIR models with nonzero correlation ρx,r.

Although the model with Δ = 0 is not a properly defined Heston hybrid model, one can
still proceed with the analysis. Parameter Ω̄ was derived based on the following equality
(see [19]), using the definition of the instantaneous correlation:

(3.19) ρ̂x,r =
E (dS(t)dr(t))− E(dS(t))E(dr(t))√

v(t)S2(t) dt+ Ω̄2r2p(t)S2(t) dt
√
η2r2p(t) dt

=
Ω̄rp(t)√

v(t) + Ω̄2r2p(t)
.

To deal with the affinity issue a constant approximation for Ω̄ was proposed, given by

(3.20) Ω̄ ≈ ρ̂x,r√
1− ρ̂2x,r

E

(
1

T

∫ T

0
v(t)dt

) 1
2
/

E

(
1

T

∫ T

0
r(t)dt

)p

.

By choosing Ω̄ = 0 the model collapses to the well-known HHW model (p = 0) or the
HCIR model (p = 1

2) with zero correlation ρx,r.D
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In Figure 2 we present the behavior of the instantaneous correlation between the equity
and the interest rates. We see that for time-dependent Ω(t), as defined in Lemma 2.1, the
instantaneous correlations are stable and oscillate around the exact value, chosen to be ρx,r =
60%, whereas for the model with Ω(t) = Ω̄ a different correlation pattern is observed. For
the latter model, initially the correlation is significantly higher than 60%, and it decreases in
time. These results show that a constant Ω̄ in the model with Δ = 0 may give an average
correlation close to the exact value, although the instantaneous correlation is not stable in
time.

Figure 2. The instantaneous correlations for different models. The blue line represents the model withΔ = 0
with constant Ω̄, the dotted-red line corresponds to the full-scale HHW model, and the green line corresponds to
the model with time-dependent Ω(t). Maturity is chosen to τ = 2 years.

The assumptions of constant Ω̄ and Δ = 0 also have an impact on the corresponding
pricing PDE. With the Feynman–Kac theorem the corresponding PDE is given by

0 =
∂φ

∂t
+

[
r − 1

2

(
v + r2pΩ̄2

)] ∂φ
∂x

+ κ(v̄ − v)
∂φ

∂v
+ λ(θ(t)− r)

∂φ

∂r
+

1

2

(
v + r2pΩ̄2

) ∂2φ
∂x2

+
1

2
γ2v

∂2φ

∂v2
+

1

2
η2r2p

∂2φ

∂r2
+ ρ̂x,vγv

∂2φ

∂x∂v
+ ηΩ̄r2p

∂2φ

∂x∂r
− rφ,(3.21)

with the same terminal condition as for (2.18). The assumption of constant Ω̄ and Δ = 0
gives rise to additional terms in the convection and diffusion parts of PDE (3.21).

By means of a numerical experiment, we check the accuracy of the model with Δ = 0 and
determine whether the model approximates the full-scale HHW hybrid model sufficiently well.
We consider here the following set of parameters: S(0) = 1, κ = 2, v(0) = v̄ = 0.05, γ = 0.1,
λ = 1.2, r(0) = θ = 0.05, η = 0.01, and correlation ρx,v = −40%. In the simulation we choose
two different values for correlation ρx,r = {30%, 50%}.

We compare the following three models: the full-scale HHW model (with MC simulation),
the model with Δ = 0, and our approximation for Σ(1,3) in PDE (2.18) with the projection
according to (3.1).
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Figure 3. The implied Black–Scholes volatilities for the full-scale Heston model and two approximations:
deterministic approach (model (2.18) with (3.1)), and model with Δ = 0 (model (3.21)).

In Figure 3 the implied volatilities obtained are compared. The model with Δ = 0 in (3.21)
does not provide a satisfactory fit to the full-scale HHWmodel, whereas the implied volatilities
obtained with the deterministic hybrid approximation compare very well (they essentially
overlap) with the full-scale reference results; see Figure 3. The volatility compensator Δ, as
defined in Lemma 2.1, cannot be neglected when approximating the full-scale HHW model,
as was stated in Lemma 3.4.

3.2. ChF for the H1-HW model. We derive a ChF for the HHW hybrid model given
in (2.18). For p = 0, the nonaffine term, Σ(1,3), in matrix (2.18) equals Σ(1,3) = ηρx,r

√
v(t)

and will be approximated by Σ(1,3) ≈ ηρx,rE(
√
v(t)).

We assume here that the term structure for the interest rate θ(t) is constant: θ(t) = θ. A
generalization can be found in [8].

According to [13], the discounted ChF for the H1-HW model is of the following form:

(3.22) φH1-HW(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)) ,

with final conditions A(u, 0) = 0, B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0, and τ := T − t.
The ChF for the H1-HW model can be derived in closed form, with the help of the following

lemmas.
Lemma 3.5 (ODEs related to the H1-HW model). The functions B(u, τ) =: B(τ),

C(u, τ) =: C(τ), D(u, τ) =: D(τ), and A(u, τ) =: A(τ) for u ∈ R and τ ≥ 0 in (3.22) for the
H 1-HW model satisfy the following system of ODEs:

B′(τ) = 0, B(u, 0) = iu,

C ′(τ) = −1− λC(τ) +B(τ), C(u, 0) = 0,

D′(τ) = B(τ)(B(τ)− 1)/2 + (γρx,vB(τ)− κ)D(τ) + γ2D2(τ)/2, D(u, 0) = 0,

A′(τ) = λθC(τ) + κv̄D(τ) + η2C2(τ)/2 + ηρx,rE(
√
v(t))B(τ)C(τ), A(u, 0) = 0,
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with τ = T − t, and where κ, λ, and θ and η, ρx,r, and ρx,v correspond to the parameters in
the HHW model (2.3).

Proof. The proof can be found in section A.1.

The following lemma gives the closed-form solution for the functions B(u, τ), C(u, τ),
D(u, τ), and A(u, τ) in (3.22).

Lemma 3.6 (ChF for the H1-HW model). The solution of the ODE system in Lemma 3.5 is
given by

B(u, τ) = iu,(3.23)

C(u, τ) = (iu− 1)λ−1(1 − e−λτ ),(3.24)

D(u, τ) =
1− e−D1τ

γ2 (1− ge−D1τ )
(κ− γρx,viu−D1) ,(3.25)

A(u, τ) = λθI1(τ) + κv̄I2(τ) +
1

2
η2I3(τ) + ηρx,rI4(τ),(3.26)

with D1 =
√

(γρx,viu− κ)2 − γ2iu(iu − 1), and where g =
κ−γρx,viu−D1

κ−γρx,viu+D1
, κ, θ, λ, and γ are as

in (2.10).
The integrals I1(τ), I2(τ), and I3(τ) admit an analytic solution, and I4(τ) admits a

semianalytic solution:

I1(τ) =
1

λ
(iu− 1)

(
τ +

1

λ
(e−λτ − 1)

)
,

I2(τ) =
τ

γ2
(κ− γρx,viu−D1)− 2

γ2
log

(
1− ge−D1τ

1− g

)
,

I3(τ) =
1

2λ3
(i+ u)2

(
3 + e−2λτ − 4e−λτ − 2λτ

)
,

I4(τ) = iu

∫ τ

0
E(
√
v(T − s))C(u, s)ds

= − 1

λ
(iu+ u2)

∫ τ

0
E(
√
v(T − s))

(
1− e−λs

)
ds.

Proof. The proof can be found in section A.2.
Note that by taking E(

√
v(T − s)) ≈ a+ be−c(T−s), with a, b, and c as given in (3.15), we

obtain a closed-form expression:

I4(τ) = − 1

λ
(iu+ u2)

[
b

c

(
e−ct − e−cT

)
+ aτ +

a

λ

(
e−λτ − 1

)
+

b

c− λ
e−cT

(
1− e−τ(λ−c)

)]
.

In Appendix B we present the generalization to a full matrix of nonzero correlations
between the processes.

4. Stochastic approximation for hybrid models. In the previous section a rather
straightforward way to approximate the nonaffine elements in the instantaneous covariance
matrix was presented. Here, we model those elements alternatively by stochastic processes
and call the resulting approximate model H2-HW (HHW model-2).
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4.1. Stochastic approach: The H2-HW model. In the result below an approximation
for finite time t and a nonzero centrality parameter is presented.

Result 4.1 (normal approximation for
√
v(t), for 0 < t <∞). For any time t < ∞, the

square root of v(t) in (2.9) can be approximated by

(4.1)
√
v(t) ≈ N

(√
c(t)(λ(t) − 1) + c(t)d +

c(t)d

2(d + λ(t))
, c(t)− c(t)d

2(d+ λ(t))

)
,

with c(t), d, and λ(t) from (3.4). Moreover, for a fixed value of x in the cumulative distribution
function F√

v(t)
(x) and a fixed value for parameter d, the error is of order O(λ2(t)) for λ(t) → 0

and O(λ(t)−
1
2 ) for λ(t) → ∞.

To show the validity of the approximations presented above, we follow Patnaik in [34], who
found that an accurate approximation for the noncentral chi-square distribution, χ2

d(λ(t)), can
be obtained by an approximation with a centralized chi-square distribution, i.e.,

(4.2) χ2(d, λ(t)) ≈ a(t)χ2(f(t)),

with a(t) and f(t) in (4.2) chosen so that the first two moments match, i.e.,

(4.3) a(t) =
d+ 2λ(t)

d+ λ(t)
, f(t) = d+

λ2(t)

d+ 2λ(t)
.

It was shown in [11, 9] that, for a given time t > 0, v(t) is distributed as c(t) times a
noncentral chi-squared random variable, χ2(d, λ(t)), with degrees of freedom parameter d and
noncentrality parameter λ(t), i.e., v(t) = c(t)χ2 (d, λ(t)) , t > 0. By combining this with (4.2)
we have

(4.4)
√
v(t) ≈

√
c(t)
√
a(t)χ2(f(t)).

Now, we use a result by Fisher [17] that for a given central chi-square random variable, χ2(d),
the expression

√
2χ2(d) is approximately normally distributed with mean

√
2d− 1 and unit

variance, i.e.,

(4.5) Fχ2(d)(x) ≈ Φ
(√

2x−
√
2d− 1

)
,

which implies

(4.6)
√
v(t) ≈ N

(√(
f(t)− 1

2

)
c(t)a(t),

1

2
c(t)a(t)

)
.

The order of this approximation can be found in [26].
Remark 3. Also in [34] it was indicated that the normal approximation resembles the

noncentral chi-square distribution very well for either a large number of degrees of freedom, d,
or a large noncentrality, λ(t). For t → 0, the noncentrality parameter, λ(t), tends to infinity.
Therefore, accurate approximations are expected.
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In the case of long maturities, the noncentrality parameter converges to 0, which may
give an inaccurate approximation. In this case, satisfactory results depend on the size of the
degrees of freedom parameter d. It is clear that d in (3.4) is directly related to the Feller
condition. In practical applications, however, 2κv̄ is often smaller than γ2. In the numerical
experiments to follow, we will study the impact of not satisfying the Feller condition.

In Result 4.1 we have shown that
√
v(t) can be well approximated by a normally

distributed random variable. As the application of Itô’s lemma to find the dynamics for√
v(t) is not allowed (the square-root process is not twice differentiable at the origin [25]),

we construct here a stochastic process, ξ(t), so that equality in distribution holds, i.e.,

ξ(t)
d≈ √v(t). Since a normal random variable is completely described by the first two

moments, we need to ensure that E(ξ(t)) = E(
√
v(t)) and Var(ξ(t)) = Var(

√
v(t)). For

this purpose we propose the following dynamics:

dξ(t) = μξ(t)dt+ ψξ(t)dWv(t), ξ(0) =
√
v(0),(4.7)

with some deterministic, time-dependent functions μξ(t) and ψξ(t), determined so that the
first two moments match. By moment matching, the unknown functions μξ(t) and ψξ(t)
in (4.7) read as

(4.8) μξ(t) =
d

dt
E(
√
v(t)), ψξ(t) =

√
d

dt
Var(
√
v(t)).

Using the results from Lemma 3.1, the expectation, E(
√
v(t)), and the variance, Var(

√
v(t)),

can be derived:

μξ(t) =
1

2
√
2

Γ
(
1+d
2

)√
c(t)

[
1F̃1

(
−1

2
,
d

2
,−λ(t)

2

)
1

2
γ2e−κt

+ 1F̃1

(
1

2
,
2 + d

2
,−λ(t)

2

)
v(0)κ

1− eκt

]
,

ψξ(t) =
(
κ(v̄ − v(0))e−κt − 2E(

√
v(t)) μξ(t)

) 1
2
.(4.9)

Here, E(
√
v(t)) and d, c(t), and λ(t) are as in (3.2), and the regularized hypergeometric

function 1F̃1(a; b; z) =: 1F1(a; b; z)/Γ(b).

The expressions for μξ(t) and ψξ(t) in (4.9) are exact. However, since those expressions are
not cheap to compute, one can find suitable approximations based on the results in Result 3.2,
which are, however, not guaranteed to be well defined for all sets of parameters.

Since the approximate hybrid models are to be used for the calibration to European-style
options (with one terminal payment), we do not need pathwise equality between processes
ξ(t) and

√
v(t); only equality in terminal distribution is needed.

Remark 4. In section 4.1 we projected
√
v(t) onto a normal process, ξ(t). As is common

with approximations by normal processes (a nonnegative random variable is projected onto
another variable ∈ R), this approximation comes with an error (as we indicated in Result 4.1).
During stress testing, examples of which are presented in section 4.3 and in Appendix C, we did
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not encounter any problems with this approximation. Typically, the stochastic approximation
is somewhat more accurate than the deterministic approach (which is not based on a normal
approximation).4

4.2. ChF for the H2-HW model. We now use the (stochastic) approximation for the
term Σ(1,3), with the process dξ(t) given by (4.7), and the time-dependent functions μξ(t) and

ψξ(t) as in (4.9).

This approximation gives rise to an extension of the three-dimensional space variable
X(t) = [S(t), v(t), r(t)]T to a four-dimensional space X̃(t) = [S(t), v(t), r(t), ξ(t)]T , with the
following system of SDEs:

(4.10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dS(t)/S(t) = r(t)dt+

√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t)− r(t))dt+ ηdWr(t), r(0) > 0,

dξ(t) = μξ(t)dt+ ψξ(t)dWv(t), ξ(0) =
√
v(0),

where

(4.11)

⎧⎨⎩
dWx(t)dWv(t) = ρx,vdt,
dWx(t)dWr(t) = ρx,rdt,
dWv(t)dWr(t) = 0,

with
√
v(t) ≈ ξ(t) and μξ(t),ψξ(t) as defined in (4.9).

By taking the log-transform, x(t) = logS(t), in the model above all the drift terms are
linear, and the symmetric instantaneous covariance matrix, with ξ(t) ≈√v(t), is given by

(4.12) Σ̃ =

⎡⎢⎢⎣
v(t) γρx,vv(t) ρx,rηξ(t) ρx,vψ

ξ(t)ξ(t)
∗ γ2v(t) 0 γψξ(t)ξ(t)
∗ ∗ η2 0

∗ ∗ ∗ (
ψξ(t)

)2
⎤⎥⎥⎦ ,

which, since ψξ(t) is a deterministic time-dependent function, is now affine.

Since the system of SDEs (4.10) is affine, we derive the corresponding ChF:
(4.13)
φH2-HW(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t) + E(u, τ)ξ(t)) ,

with final conditions φH2-HW(u,X(T ), 0) = exp(iux(T )) and ξ(t) ≈√v(t).
The functions A(u, τ), B(u, τ), C(u, τ), D(u, τ), and E(u, τ) satisfy the complex-valued

ODEs given by the following lemma.

Lemma 4.2 (ODEs related to the H2-HW model). The functions B(u, τ) =: B(τ),
C(u, τ) := C(τ), D(u, τ) =: D(τ), E(u, τ) =: E(τ), and A(u, τ) =: A(τ) for u ∈ R

4The method by Antonov from [4, 5] is also not based on normal approximations.
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and τ = T − t > 0 in (4.13) satisfy

B′(τ) = 0, B(u, 0) = iu,

C ′(τ) = −1 +B(τ)− λC(τ), C(u, 0) = 0,

D′(τ) = (B(τ)− 1)B(τ)/2 + (γρx,vB(τ)− κ)D(τ) + γ2D2(τ)/2, D(u, 0) = 0,

E′(τ) = ρx,rηB(τ)C(τ) + ψξ(t)ρx,vB(τ)E(τ) + γψξ(t)D(τ)E(τ), E(u, 0) = 0,

A′(τ) = κv̄D(τ) + λθC(τ) + μξ(t)E(τ) + η2C2(τ)/2 +
(
ψξ(t)

)2
E2(τ)/2, A(u, 0) = 0,

with μξ(t), ψξ(t) as given in (4.9).
Proof. The proof is very similar to the proof of Lemma 3.5.
Solutions to the ODEs for B(u, τ), C(u, τ), and D(u, τ) can be found in Lemma 3.6, where

the deterministic linearization was applied.
Note that the remaining two functions, E(u, τ) and A(u, τ), contain the rather complicated

functions μξ(t) and ψξ(t). We leave these equations to be solved numerically by a basic ODE
routine.

A detailed analysis of the properties of the ChF will be studied in a followup article with
theoretical research.

4.3. Numerical experiment. Here we check the performance of the deterministic (sec-
tion 3.2) and the stochastic (section 4.2) approximations to the full-scale HHW model in
terms of differences in implied volatilities. The HHW benchmark prices were obtained by MC
simulation, as in [2].

In Table 1 we present the errors for Black–Scholes implied volatilities, ε(ρx,r), for different
correlations between the stock, S(t), and the short rate, r(t), and different strikes. We show
results for a maturity of 10 years, τ = 10, and for parameters that do not satisfy the Feller
condition.5

Both approximations give very similar, highly accurate results for low correlations, ρx,r.
This is different for high values of ρx,r. The deterministic approach generates somewhat
more bias for high strikes, whereas the stochastic approach is essentially bias-free. The errors
presented in Table 1 depend on the size of the volatility parameter of the interest rate process,
η. For very low volatility, the two approximations provide a similar level of accuracy. As the
volatility of the short rate process increases, a higher accuracy is expected for the stochastic
approximation.

Calibration results will be presented in section 6. The performance of the methods
developed is also presented in Appendix C, where our schemes are compared to the Markovian
projection method [5].

5. HCIR hybrid model. We also present the ChF for an HCIR hybrid model, p = 1/2
in (2.3), which is more involved than the HW-based hybrid models. In the HCIR model the
nonaffine term is given in (2.17). Again we use two approximations to obtain the ChF. In the
first model, H1-CIR, we use the deterministic setup, and for the second model, H2-CIR, we
determine the stochastic approximation.

5For short maturities, τ < 10, and for model parameters for which the Feller condition is satisfied, we did
not find any significant differences between the two approximations and the full-scale model.
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Table 1
The implied volatilities and errors for the deterministic approximation (Approx 1) from (2.18) with

approximation (3.2) and the stochastic approximation (Approx 2) from section 4.1 of the HHW model compared
to the MC simulation performed with 20T steps and 100.000 paths. The error is defined as a difference between
reference implied volatilities and the approximations. The parameters were chosen as κ = 0.3, γ = 0.6,
v(0) = v̄ = 0.05, λ = 0.01, r(0) = θ = 0.02, η = 0.01, and S(0) = 100 and the correlations as ρx,v = −30%
and ρx,r ∈ {20%, 60%}. Numbers in brackets indicate standard deviations.

ρx,r Strike MC Imp. vol. [%] Approx 1 Approx 2 Err. 1 Err. 2

40 26.26 (0.22) 25.87 25.99 0.39 0.27
80 20.07 (0.22) 20.03 20.02 0.04 0.05

20% 100 18.43 (0.24) 18.55 18.36 −0.12 0.07
120 17.51 (0.20) 17.74 17.42 −0.23 0.09
180 17.40 (0.22) 17.55 17.36 −0.15 0.04

40 26.27 (0.14) 26.21 26.61 0.06 −0.34
80 20.59 (0.11) 21.00 20.91 −0.41 −0.32

60% 100 19.11 (0.10) 19.84 19.22 −0.72 −0.10
120 18.31 (0.10) 19.21 18.18 −0.90 0.13
180 18.25 (0.11) 18.92 18.34 −0.67 −0.09

5.1. ChF for the H1-CIR model. The dynamics for the stock, S(t), in the HCIR model
read as

(5.1)

⎧⎪⎪⎨⎪⎪⎩
dS(t)/S(t) = r(t)dt +

√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t)− r(t))dt + η
√
r(t)dWr(t), r(0) > 0,

with dWx(t)dWv(t) = ρx,vdt, dWx(t)dWr(t) = ρx,rdt, and dWv(t)dWr(t) = 0.
Here, we assume that the nonaffine term in the pricing PDE (2.18), Σ(1,3), in (2.17) can

be approximated as

(5.2) Σ(1,3) ≈ ηρx,rE
(√

r(t)
√
v(t)
) ⊥⊥
= ηρx,rE(

√
r(t))E(

√
v(t)).

Since the processes involved are of the same type, the expectations in (5.2) can be determined
as presented in section 3.1. For the log-stock, x(t) = log S(t), the ChF and the corresponding
Riccati ODEs are defined as below:

(5.3) φH1-CIR(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)) .

Lemma 5.1 (ODEs related to the H1-CIR model). The functions B(u, τ) =: B(τ),
C(u, τ) =: C(τ), D(u, τ) =: D(τ), and A(u, τ) =: A(τ) for u ∈ R and τ > 0 in (5.3)
satisfy

B′(τ) = 0, B(u, 0) = iu,

C ′(τ) = −1 +B(τ)− λC(τ) + η2C2(τ)/2, C(u, 0) = 0,

D′(τ) = (B(τ)− 1)B(τ)/2 + (γρx,vB(τ)− κ)D(τ) + γ2D2(τ)/2, D(u, 0) = 0,

A′(τ) = κv̄D(τ) + λθC(τ) + ηρx,rE(
√
v(t))E(

√
r(t))B(τ)C(τ), A(u, 0) = 0,(5.4)
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with τ = T − t, E(
√
v(t)), and E(

√
r(t)) from Lemma 3.1.

Proof. The proof is very similar to the proof of Lemma 3.5 in section A.1.
Lemma 5.2 (solutions for the ChF coefficients of the H1-CIR model). The solutions for the

ODEs for B(u, τ), C(u, τ), D(u, τ), and A(u, τ), defined in Lemma 5.1, are given by

B(u, τ) = iu,(5.5)

C(u, τ) =
1− e−D1τ

η2 (1−G1e−D1τ )
(λ−D1) ,(5.6)

D(u, τ) =
1− e−D2τ

γ2 (1−G2e−D2τ )
(κ− γρx,viu−D2) ,(5.7)

and

A(u, τ) =

∫ τ

0

(
κv̄D(u, s) + λθC(u, s) + ρx,rηiuE(

√
v(T − s))E(

√
r(T − s))C(u, s)

)
ds,

with D1 =
√
λ2 + 2η2(1− iu), D2 =

√
(γρx,viu− κ)2 − (iu− 1)iuγ2, G1 = λ−D1

λ+D1
, and G2 =

κ−γρx,viu−D2

κ−γρx,viu+D2
.

Proof. The proof is very similar to the proof of Lemma 3.6 in section A.2.
The integral for A(u, τ) in Lemma 5.2 can be determined analytically only for constant

approximations of the two expectations involved.

5.2. ChF for the H2-CIR model. As before, we aim to find an approximation of the
instantaneous covariance matrix for which the affinity of the approximation model is obtained,
but now with the stochastic approximation.

Σ(1,3) now consists of two stochastic components,
√
v(t) and

√
r(t). We approximate

both and obtain

(5.8) Σ(1,3) ≈ Σ̃(1,3) = ρx,rηξ(t)R(t), R(t) ≈
√
r(t), ξ(t) ≈

√
v(t).

This form, based on the product of two random variables, is not affine. To linearize (5.8)
we need to specify the joint dynamics, d(

√
v(t)
√
r(t)). If we assume that the dynamics for

d(
√
v(t)) and d(

√
r(t)) can be approximated by normally distributed processes, we find, by

Itô’s lemma, that the dynamics of z(t) = ξ(t)R(t) are given by

(5.9) dz(t) =
(
μR(t)ξ(t) + μξ(t)R(t)

)
dt+ ψξ(t)R(t)dWv(t) + ψR(t)ξ(t)dWr(t).

With three additional variables, ξ(t), R(t), and z(t), the state vector X(t), with log-
stock process x(t) = log S(t), is expanded to X(t) = [x(t), v(t), r(t), ξ(t), R(t), z(t)]T , with the
following corresponding system of SDEs:

(5.10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx(t) =

(
r(t)− 1

2
v(t)

)
dt +

√
v(t)dWx(t), x(0) = log(S(0)),

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t)− r(t))dt + η
√
r(t)dWr(t), r(0) > 0,
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with the linearizing variables ξ(t), R(t), and z(t) given by
(5.11)

dξ(t) = μξ(t)dt + ψξ(t)dWv(t), ξ(0) =
√
v(0),

dR(t) = μR(t)dt + ψR(t)dWr(t), R(0) =
√
r(0),

dz(t) =
(
μR(t)ξ(t) + μξ(t)R(t)

)
dt + ψξ(t)

√
r(t)dWv(t) + ψR(t)

√
v(t)dWr(t),

with z(0) =
√
r(0)
√
v(0), ξ(t) ≈ √v(t), R(t) ≈ √r(t), z(t) ≈ √v(t)√r(t), and the other

parameters as in (2.3). The symmetric instantaneous covariance matrix reads as

(5.12) Σ̃∗ =

⎡⎢⎢⎢⎢⎢⎢⎣

v(t) ρx,vγv(t) ρx,rηz(t) ρx,vψ
ξ(t)ξ(t) ρx,rψ

R(t)ξ(t) s1(t)
∗ γ2v(t) 0 ψξ(t)γξ(t) 0 γψξ(t)z(t)
∗ ∗ η2r(t) 0 ψR(t)ηR(t) ηψR(t)z(t)
∗ ∗ ∗ (ψξ(t))2 0 (ψξ(t))2R(t)
∗ ∗ ∗ ∗ (ψR(t))2 (ψR(t))2ξ(t)
∗ ∗ ∗ ∗ ∗ s2(t)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

with s1(t) = ρx,vψ
ξ(t)z(t) + ρx,rψ

R(t)v(t) and s2(t) = (ψξ(t))2r(t) + (ψR(t))2v(t).
Since ψξ(t) and ψR(t) are deterministic time-dependent functions, the approximate H2-

CIR model is now affine, and we can derive the corresponding ChF:

(5.13)
φH2-CIR(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)

+E(u, τ)ξ(t) + F (u, τ)R(t) +G(u, τ)z(t)) ,

with ξ(t) =
√
v(t), R(t) =

√
r(t), and z(t) =

√
v(t)
√
r(t), and where the functions A(u, τ),

B(u, τ), C(u, τ), D(u, τ), E(u, τ), F (u, τ), and G(u, τ) satisfy the ODEs given by the following
lemma.

Lemma 5.3 (ODEs related to the H2-CIR model). The functions B(u, τ) =: B(τ),
C(u, τ) =: C(τ), D(u, τ) =: D(τ), E(u, τ) =: E(τ), F (u, τ) =: F (τ), G(u, τ) =: G(τ), and
A(u, τ) =: A(τ) for u ∈ R and τ > 0 in (5.13) satisfy

B′(τ) = 0,

C ′(τ) = −1 +B(τ)− λC(τ) + η2C2(τ)/2 + (ψξ(t))2G2(τ)/2,

F ′(τ) = μξ(t)G(τ) + ψR(t)ηC(τ)G(τ) + (ψξ(t))2E(τ)G(τ),

G′(τ) = ηρx,rB(τ)C(τ) + ρx,vψ
ξ(t)B(τ)G(τ) + γψξ(t)D(τ)G(τ) + ηψR(t)C(τ)G(τ)

and

D′(τ) = B(τ) (B(τ)− 1) /2− κD(τ) + γρx,vB(τ)D(τ) + γ2D2(τ)/2

+ ρx,rψ
R(t)B(τ)G(τ) + (ψR(t))2G2(t)/2,

E′(τ) = μR(t)G(τ) + ψξ(t)ρx,vB(τ)E(τ) + γψξ(t)D(τ)E(τ)

+ ρx,rψ
R(t)B(τ)F (τ) + (ψR(t))2F (τ)G(τ),

A′(τ) = κv̄D(τ) + λθC(τ) + μξ(t)E(τ) + μR(t)F (τ)

+ (ψξ(t))2E2(τ)/2 + (ψR(τ))2F 2(τ)/2,
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with the final conditions B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0, E(u, 0) = 0, F (u, 0) = 0,
G(u, 0) = 0, and A(u, 0) = 0. Parameters μξ(t), μR(t), ψξ(t), ψR(t) are specified in (4.9),
and the remaining parameters are in (5.10).

Proof. The proof is very similar to the proof of Lemma 3.5 in section A.1.

The system of the ODEs given in Lemma 5.3 is difficult to solve analytically. To find the
solution we have used an explicit Runge–Kutta method [18, 27], ode45 from the MATLAB
package. Numerical results are presented in the next subsection.

The extension of the H2-CIR model to the case of a full matrix of correlations is a trivial
exercise.

5.3. Numerical experiment. We compare the performance of the approximations H1-CIR
and H2-CIR with the full-scale HCIR model. As in the case of the HHW models, we have
chosen here T = 10, and the model parameters are chosen so that the Feller condition does
not hold. The results, presented in Table 2, are very satisfactory. Both approximation models,
H1-CIR and H2-CIR, provide an error, ε(ρx,r), for a call option within the confidence bounds.
For higher correlation ρx,r, the error grows, but it is still small.

Table 2
The implied volatilities and errors for the deterministic approximation (Approx 1) from (2.18) with

approximation (3.2) and the stochastic approximation (Approx 2) from section 4.1 of the HCIR model compared
to the MC simulation performed with 20T steps and 100.000 paths. The error is defined as a difference between
the reference implied volatilities and the approximation. The parameters were chosen as κ = 0.3, γ = 0.6,
v(0) = v̄ = 0.05, λ = 0.01, r(0) = θ = 0.02, η = 0.01, and S(0) = 100 and the correlations as ρx,v = −30%
and ρx,r ∈ {20%, 60%}. Numbers in brackets indicate standard deviations.

ρx,r Strike MC Imp. vol. [%] Approx 1 Approx 2 Err. 1 Err. 2

40 25.66 (0.17) 25.68 25.74 −0.02 −0.08
80 19.17 (0.15) 19.21 19.25 −0.04 −0.08

20% 100 17.10 (0.18) 17.19 17.09 −0.09 −0.01
120 15.77 (0.17) 15.90 15.85 −0.14 −0.08
180 15.84 (0.18) 15.90 15.86 −0.06 −0.02

40 24.95 (0.14) 25.72 25.79 −0.77 −0.84
80 18.93 (0.12) 19.32 19.32 −0.39 −0.39

60% 100 16.92 (0.13) 17.37 17.08 −0.44 −0.15
120 15.60 (0.13) 16.17 15.93 −0.57 −0.32
180 15.57 (0.14) 16.10 15.98 −0.53 −0.41

We also present the time needed for obtaining the plain vanilla option prices, with the ChFs
H2-HW (section 4.2) and H2-CIR (section 5.2) based on the numerical solution for the system
of Riccati ODEs. Table 3 shows that, although the ODEs in Lemma 5.3 need to be solved
numerically, the time for obtaining European option prices, by the COS pricing method [16],
is often less than 0.1 seconds. The pricing of the options by means of the COS method, a
method based on Fourier cosine series expansions, was performed with a fixed number of 250
terms, which guaranteed highly accurate option prices (up to machine precision).

The tolerance for the ODE solves, by ode45 from MATLAB, is varied in the experiments
shown in the table.
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Table 3
Time in seconds for pricing a call option based on an explicit Runge–Kutta method combined with the COS

method [16].

Model Accuracy Maturity
τ = 0.5 τ = 1 τ = 2 τ = 5 τ = 10

H2-HW 10−2 4.37e-2 4.80e-2 6.41e-2 7.49e-2 8.10e-2
10−5 5.32e-2 5.82e-2 8.05e-2 9.74e-2 1.21e-1

H2-CIR 10−2 7.78e-2 7.80e-2 8.38e-2 8.48e-2 8.90e-2
10−5 8.33e-2 8.97e-2 1.05e-1 1.34e-1 1.62e-1

6. Calibration of the Heston hybrid models. Here, we evaluate the performance of the
approximations H1-HW and H2-HW for the HHW hybrid model in a calibration setting.

We reference call option prices, based on synthetic data that is representative for the
skew and smile patterns observed in real-life applications. For all models the simulation was
performed with an a priori defined speed of mean reversion for the variance process, κ = 0.3
(which is set small on purpose). The calibration is performed here with constant correlation
ρx,r = 20%. In practice, this correlation can be obtained from historical data.

The calibration procedure is performed in two stages. First, the parameters for the
short rate process are determined (independent of the equity part). In the second stage, the
calibrated r(t) is included in the Heston model, and the remaining parameters are determined.
The parameters for the interest rate part are found to be λHW = 0.501, ηHW = 0.005, and
r(0) = 0.04.

First, we also perform, as a benchmark, the calibration of the pure Heston model with
constant interest rate; see Table 4. SSE stands stands for the “sum-squared error.” We
calibrate the models for different maturities, τ .

Table 4
Calibration results for the Heston stochastic volatility model with deterministic interest rate. The mean

reversion parameter is κ = 0.3.

Model γ v̄ ρx,v v(0) r SSE

Heston (τ = 0.5) 0.5992 0.0823 −58.32% 0.0407 0.04 4.9063E-4
Heston (τ = 10) 0.6019 0.0828 −48.49% 0.0411 0.04 1.2182E-4

In Table 5 the calibration results for the HHW approximations, H1-HW and H2-HW,
are presented. For both models a highly satisfactory fit is obtained, with a slightly better
performance of the stochastic approximation H2-HW. For ρx,r = 20% the calibration
procedure gives roughly the same sets of parameters for both models. When comparing the
calibration results for HHW with those for the pure Heston model, we see that the inclusion
of stochastic interest rates in the model results in a lower vol-vol parameter, γ, and a more
negative correlation, ρx,v. The lower value of parameter γ can be explained by the additional
volatility which comes from the interest rate process.

In Figure 4 the corresponding implied volatilities, for the full-scale model, for a short and
a long maturity time (τ = 0.5y and τ = 10y) are presented. The left-hand sides of the figure
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Table 5
Calibration results for the H 1-HW model from section 3.2, and the H 2-HW model from section 4.2, with

κ = 0.3 and correlation ρx,r = 20%.

Model τ γ v̄ ρx,v v(0) SSE

H1-HW τ = 0.5 0.5840 0.0822 −60.06% 0.0407 4.4581E-4
τ = 10 0.4921 0.0826 −61.50% 0.0418 3.2912E-4

H2-HW τ = 0.5 0.5879 0.0930 −60.10% 0.0398 4.9677E-4
τ = 10 0.4884 0.0820 −60.72% 0.0421 8.5934E-5

present the implied volatilities and their errors for H1-HW and H2-HW. The related implied
volatilities of the full-scale HHW model, with the parameters from H1-HW and H2-HW, are
shown in the right-hand sides of the figure.

Both hybrid models perform very well. For long maturities a higher accuracy for the
hybrid models compared to the plain Heston model can be observed.

7. Concluding remarks. In this article we have presented the extension of the Heston
stochastic volatility equity model by stochastic interest rates. We have focused our attention
on two hybrid models, the HHW and the HCIR models.

By approximations of the nonaffine terms in the corresponding instantaneous covariance
matrix, we placed the approximation hybrid models in the framework of AD processes. The
approximations in the models have been validated by comparing the implied volatilities to the
full-scale hybrid models.

The approximations in the HHW and the HCIR models lead to highly efficient deter-
mination of the corresponding ChFs. The more sophisticated approximation is based on a
transformation of the three-dimensional HCIR model to a six-dimensional representation.

The deterministic and the stochastic approaches for approximating the instantaneous
covariance matrix of the hybrid model provide highly satisfactory approximations for prices
for European options.

Appendix A. Proofs and details.

A.1. Proof of Lemma 3.5.

Proof. For a given state vector X(t) = [x(t), r(t), v(t)]T and φ := φ(u,X(t), t, T ), we find
the system of the ODEs satisfying the following pricing PDE:

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t)− r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2

+
1

2
γ2v

∂2φ

∂v2
+

1

2
η2
∂2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+ ηρx,rE(

√
v(t))

∂2φ

∂x∂r
− rφ,(A.1)

subject to terminal condition φ(u,X(T ), T, T ) = exp (iux(T )).

Since the PDE in (A.1) is affine, its solution is of the following form:

φ := φ(u,X(t), t, T ) = exp (A(u, t, T ) +B(u, t, T )x(t) + C(u, t, T )r(t) +D(u, t, T )v(t)) .
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Figure 4. For τ = 0.5 and τ = 10, ρx,r = 20%, the implied Black–Scholes volatilities for Heston hybrid
models are compared to the pure Heston model and a reference implied volatility curve. The left-hand graphs
present the implied volatilities and errors for H 1-HW and H 2-HW. The implied volatilities for the full-scale
HHW model, with the parameters from H 1-HW and H 2-HW, are in the right-hand figures.

By setting A := A(u, t, T ), B := B(u, t, T ), C := C(u, t, T ), and D := D(u, t, T ), we find the
following partial derivatives:

∂φ

∂t
= φ

(
∂A

∂t
+ x(t)

∂B

∂t
+ r(t)

∂C

∂t
+ v(t)

∂D

∂t

)
,(A.2)

∂φ

∂x
= Bφ,

∂2φ

∂x2
= B2φ,

∂2φ

∂x∂v
= BDφ,

∂2φ

∂x∂r
= BCφ,(A.3)

∂φ

∂r
= Cφ,

∂2φ

∂r2
= C2φ,(A.4)

∂φ

∂v
= Dφ,

∂2φ

∂v2
= D2φ.(A.5)
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By substitution, PDE (A.1) becomes

0 =
∂A

∂t
+ x

∂B

∂t
+ r

∂C

∂t
+ v

∂D

∂t
+

(
r − 1

2
v

)
B + κ(v̄ − v)D + λ(θ(t)− r)C

+
1

2
vB2 +

1

2
γ2vD2 +

1

2
η2C2 + ρx,vγvBD + ηρx,rE(

√
v(t))BC − r.(A.6)

Now, by collecting the terms for x(t), r(t), and v(t), we find the following set of ODEs:

∂B

∂t
= 0,(A.7)

∂C

∂t
= −B + λC + 1,(A.8)

∂D

∂t
=

1

2
B + κD − 1

2
γ2D2 − ρx,vγBD − 1

2
B2,(A.9)

∂A

∂t
= −κv̄D − λθC − 1

2
η2C2 − ρx,rηE(

√
v(t))BC.(A.10)

By setting τ = T − t, the proof is finished.

A.2. Proof of Lemma 3.6.
Proof. Obviously, due to the final condition, B(u, 0) = iu, we have B(u, τ) = iu. For the

second ODE, by multiplying both sides with eλτ , we get

d

dτ

(
eλτC(u, τ)

)
= (iu− 1)eλτ ;(A.11)

by integrating both sides and using the final condition, C(u, 0) = 0, we find

C(u, τ) = (iu− 1)λ−1
(
1− e−λτ

)
.

By setting a = −1
2(u

2 + iu), b = γρx,viu − κ, and c = 1
2γ

2, the ODEs for D(u, τ) and I2(τ)
are given by the following Riccati-type equation:

d

dτ
D(u, τ) = a+ bD(u, τ) + cD2(u, τ), D(u, 0) = 0,(A.12)

I2(τ) = κv̄

∫ τ

0
D(u, s)ds.(A.13)

Equations (A.12) and (A.13) are of the same form as those in [22]. Their solutions are given
by

D(u, τ) =
−b−D1

2c(1 −Ge−D1τ )
(1− e−D1τ ),(A.14)

I2(τ) =
1

2c

(
(−b−D1)τ − 2 log

(
1−Ge−D1τ

1−G

))
,(A.15)

with D1 =
√
b2 − 4ac, G = −b−D1

−b+D1
.
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The evaluation of the integrals I1(τ), I3(τ), and I4(τ) is straightforward. The proof is
finished by appropriate substitutions.

Appendix B. Hybrid model with full matrix of correlations. Similar to the approximation
of the nonaffine terms in the instantaneous covariance matrix of the Heston hybrid model
presented in section 3.1, we discuss here the inclusion of the additional correlation, ρr,v,
between the interest rate, r(t), and the stochastic variance, v(t). We call the resulting
model the HHW hybrid model-3 and denote it by H3-HW. For the state vector X(t) =
[x(t), v(t), r(t)]T, the H3-HW model has the following symmetric instantaneous covariance
matrix:

(B.1) Σ := σ(X(t))σ(X(t))T =

⎡⎣ v(t) ρx,vγv(t) ρx,rη
√
v(t)

∗ γ2v(t) ρr,vγη
√
v(t)

∗ ∗ η2

⎤⎦
(3×3)

.

The affinity issue arises in two terms of matrix (B.1), namely, in elements (1, 3) and (2, 3):

Σ(1,3) = ρx,rη
√
v(t), Σ(2,3) = ρr,vγη

√
v(t).

For completeness, we also present the associated Kolmogorov backward equation, which is
now given by

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t)− r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2
+

1

2
γ2v

∂2φ

∂v2

+
1

2
η2
∂2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+Σ(1,3)

∂2φ

∂x∂r
+Σ(2,3)

∂2φ

∂r∂v
− rφ,(B.2)

with the final condition equal to

φ(u,X(T ), T, T ) = exp(iux(T )).

With ρr,v = 0 the H3-HW model with a full matrix of correlations collapses to the setup
in section 3.1.

As before, we can use the deterministic approximations Σ(1,3) ≈ ρx,rηE(
√
v(t)) and

Σ(2,3) ≈ ρr,vγηE(
√
v(t)), for which Result 3.3 can be used.

The representations of the HHW model in (2.9) and the model in (2.3) with ρr,v �= 0 for
p = 0 are closely related. The following lemma specifies the relation in terms of the coefficients
of the corresponding ChF.

Lemma B.1 (ChF for the H3-HW model with a full matrix of correlations). The discounted
ChF for the H 3-HW model is of the following form:

φH3-HW(u,X(t), τ) = exp
(
Â(u, τ) + B̂(u, τ)x(t) + Ĉ(u, τ)r(t) + D̂(u, τ)v(t)

)
,

with the functions Â(u, τ), B̂(u, τ), Ĉ(u, τ), and D̂(u, τ) given by

B̂(u, τ) = B(u, τ), Ĉ(u, τ) = C(u, τ), D̂(u, τ) = D(u, τ),(B.3)
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with B(u, τ) in (3.23), C(u, τ) in (3.24), and D(u, τ) in (3.25). For Â(u, τ) we have

(B.4) Â(u, τ) = A(u, τ) + ρr,vγη

∫ τ

0
E(
√
v(T − s))Ĉ(u, s)D̂(u, s)ds,

where A(u, τ) is given in (3.26).

The accuracy of the HHW approximations with a full matrix of correlations is discussed
in Appendix C.

Appendix C. Comparison to Markov projection method. In this appendix we compare
our results to the Markovian projection (MP) method [5]. We check the results of three
different approximation schemes: the MP method, Approx 1, i.e., the approximation with√
v(t) ≈ E(

√
v(t)) (section 3.1), and Approx 2, i.e., the method with

√
v(t) ≈ N (·)

(section 4.1).

In the experiment, taken directly from [4], we price an equity option with continuous
dividend. The model parameters for the HHWmodel are given by κ = 0.25, v̄ = v(0) = 0.0625,
γ = 0.625, λ = 0.05, and η = 0.01, and a zero-coupon bond is given by P (0, T ) = e−0.05T and
a continuous dividend of 2%. A full matrix of correlations, as in [4], is given by

(C.1) C =

⎡⎣ 1 ρx,v ρx,r
ρx,v 1 ρv,r
ρx,r ρv,r 1

⎤⎦ =

⎡⎣ 100% −40% 30%
−40% 100% 15%
30% 15% 100%

⎤⎦ .
The MC reference for the implied volatilities, the corresponding standard deviations, and the
results for the MP method are all taken from [4].

In order to incorporate a continuous dividend in the equity model, one can model foreign-
exchange (FX), in which the volatility of the foreign interest rates is set to zero. In such a
setup, the forward, F (t), is defined as

F (t) = S(t)
Pf (t, T )

Pd(t, T )
and F (0) = S(0)

e−0.02T

e−0.05T
,

where Pf (t, T ) and Pd(t, T ) are the foreign and domestic zero-coupon bonds, respectively,
paying e1 at the maturity T . By switching from the spot risk-neutral measure, Q, to the
T -forward measure, QT , discounting will be decoupled from taking the expectation, i.e.,

E

(
1

B(T )
max(S(T )−K, 0)|F(0)

)
= Pd(0, T )E

T (max(F (T )−K, 0)|F(0)) .

Moreover, the forward, F (t), is a martingale with dynamics given by

(C.2)
dF (t)/F (t) =

√
v(t)dW T

x (t)− ηBr(t, T )dW
T
r (t),

dv(t) =
(
κ(v̄ − v(t)) + γρv,rηBr(t, T )

√
v(t)
)
dt+ γ

√
v(t)dW T

v (t),

where Br(t, T ) =
1
λ

(
e−λ(T−t) − 1

)
, and the full correlation structure given in (C.1).
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Table 6
The error for a deterministic (Approx 1) and a stochastic approximation (Approx 2) of the HHW model

compared to the MP method. The MP and MC results with the corresponding standard deviations were taken
from [4]. The error is defined as a difference between the reference implied volatilities and the approximation.

T Strike Imp. vol [%] MP Approx 1 Approx 2 Err. MP Err. 1 Err. 2

86.07 24.45 24.49 24.48 24.48 −0.04 −0.03 −0.03
92.77 22.25 22.27 22.27 22.25 −0.02 −0.02 0.00

1y 100.00 20.36 20.32 20.35 20.30 0.04 0.01 0.06
107.79 19.42 19.34 19.38 19.34 0.08 0.04 0.08
116.18 19.67 19.64 19.62 19.64 0.03 0.05 0.03

77.12 22.61 22.65 22.61 22.63 −0.04 0.00 −0.02
87.82 20.05 20.05 20.09 20.06 0.00 −0.04 −0.01

3y 100.00 17.95 17.91 18.09 17.90 0.04 −0.14 0.05
113.87 17.23 17.14 17.32 17.15 0.09 −0.09 0.08
129.67 18.02 17.92 17.93 18.00 0.10 0.09 0.02

71.50 21.89 21.94 21.90 21.95 −0.05 −0.01 −0.06
84.56 19.43 19.45 19.52 19.48 −0.02 −0.09 −0.05

5y 100.00 17.49 17.44 17.71 17.45 0.05 −0.22 0.04
118.26 16.83 16.72 17.01 16.76 0.11 −0.18 0.07
139.85 17.55 17.42 17.49 17.57 0.13 0.06 −0.02

62.23 21.55 21.61 21.57 21.68 −0.06 −0.02 −0.13
78.89 19.52 19.51 19.67 19.61 0.01 −0.15 −0.09

10y 100.00 18.01 17.91 18.31 17.97 0.10 −0.30 −0.04
126.77 17.41 17.22 17.67 17.30 0.19 −0.26 0.11
160.70 17.75 17.51 17.79 17.78 0.24 −0.04 −0.03

51.13 22.28 22.32 22.37 22.47 −0.04 −0.09 −0.19
71.50 20.91 20.86 21.14 21.03 0.05 −0.23 −0.12

20y 100.00 19.94 19.77 20.27 19.91 0.17 −0.33 0.03
139.85 19.44 19.16 19.77 19.32 0.28 −0.33 0.12
195.58 19.40 19.05 19.63 19.39 0.35 −0.23 0.01

Under the log-transform, x(t) = logF (t), the Kolmogorov backward PDE reads as

− ∂φ

∂t
= κ(v̄ − v)

∂φ

∂v
+

(
1

2
v − ρx,rηBr(t, T )

√
v − 1

2
η2B2

r (t, T )

)(
∂2φ

∂x2
− ∂φ

∂x

)
+
(
ρx,vγv − ρv,rγη

√
vBr(t, T )

) ∂2φ
∂x∂v

+
1

2
γ2v

∂2φ

∂v2
+ ρv,rγη

√
v
∂φ

∂v
,(C.3)

with the final condition φ(u,X(T ), T, T ) = eiux(T ).
We linearize PDE (C.3) in two ways: by the deterministic approach described in section 3.1

and Appendix B, and by the stochastic approach as in section 4.1. Both approximations result
in affine approximations of PDE (C.3).6

The results of the experiments performed, presented in Table 6, show a highly satisfactory
accuracy of the HHW approximations introduced in this paper. When comparing to the MP
method, we see that the MP method is more accurate for low strike values, whereas our proxies
perform favorably for larger strike values, especially when large maturities are considered.

6Since the moments of the square-root process under the T -forward measure are difficult to find, we first
project

√
v(t) on a normal process, under measure Q, and then change measures.
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Figure 5. Left: Implied volatilities for a maturity of 10 years. Right: The error for the different
approximations. (MP stands for Markovian projection, Approx 1 is the deterministic approach, and Approx 2
corresponds to the approximation with

√
v(t) ≈ N (·).)

In Figure 5 the error results for T = 10 are presented. In this experiment, the stochastic
approximation, Approx 2, performed somewhat better than the deterministic approach,
Approx 1.

In the case of the deterministic approach, pricing of European options is done in a
split second (the corresponding ChF is analytic when the Feller condition is satisfied; one
integration step is required otherwise). In the case of the stochastic approach a numerical
routine for solving the ODEs is employed. This, however, can also be done highly efficiently,
as already presented in Table 3.
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